Vol. 1. BEAN & SIMONS—Lighting Fittings: Performance and Design
Vol. 2. WILSON—Modern Practice in Servo Design
Vol. 3. KNIGHT—Power Systems Engineering and Mathematics
Vol. 4. JONES—New Approaches to the Design and Economics of EHV Transmission Plant
Vol. 5. BOWDLER—Measurements in High-Voltage Test Circuits
Vol. 6. MURPHY—Thyristor Control of A.C. Motors
COMPUTER TECHNIQUES FOR ELECTROMAGNETICS

EDITED BY
R. MITTRA

University of Illinois, Urbana, Illinois

PERGAMON PRESS
OXFORD · NEW YORK · TORONTO
SYDNEY · BRAUNSCHWEIG
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>xi</td>
</tr>
<tr>
<td>1. A BRIEF PREVIEW by R. MITTRA**</td>
<td>1</td>
</tr>
<tr>
<td>References</td>
<td>5</td>
</tr>
<tr>
<td>2. WIRE ANTENNAS by G.A. THIELE**</td>
<td>7</td>
</tr>
<tr>
<td>2.1. Introduction</td>
<td>7</td>
</tr>
<tr>
<td>2.2. Integral Equations for Wire Antennas</td>
<td>8</td>
</tr>
<tr>
<td>2.2.1. A Volume Equivalence Theorem</td>
<td>8</td>
</tr>
<tr>
<td>2.2.2. Pocklington's Integral Equation</td>
<td>9</td>
</tr>
<tr>
<td>2.2.3. Hallen's Integral Equation</td>
<td>14</td>
</tr>
<tr>
<td>2.3. Method of Moments</td>
<td>15</td>
</tr>
<tr>
<td>2.3.1. Galerkin's Method</td>
<td>16</td>
</tr>
<tr>
<td>2.3.2. Point-matching</td>
<td>17</td>
</tr>
<tr>
<td>2.4. Bases</td>
<td>18</td>
</tr>
<tr>
<td>2.4.1. Entire-domain Bases</td>
<td>19</td>
</tr>
<tr>
<td>2.4.2. Sub-domain Bases (Segmentation)</td>
<td>21</td>
</tr>
<tr>
<td>2.4.3. Some Common Basis Functions</td>
<td>23</td>
</tr>
<tr>
<td>2.4.4. A Basis Transformation Method</td>
<td>24</td>
</tr>
<tr>
<td>2.4.5. Piecewise-sinusoidal Basis: Reaction-matching</td>
<td>29</td>
</tr>
<tr>
<td>2.4.6. Characteristic Mode Currents: an Eigenvalue Problem</td>
<td>36</td>
</tr>
<tr>
<td>2.4.7. The Stability Problem</td>
<td>37</td>
</tr>
<tr>
<td>2.5. Calculation of Antenna Characteristics</td>
<td>38</td>
</tr>
<tr>
<td>2.5.1. Current Distribution, Impedance and Lumped Loading</td>
<td>38</td>
</tr>
<tr>
<td>2.5.2. Radiation Patterns, Gain and Efficiency</td>
<td>40</td>
</tr>
<tr>
<td>2.6. The Yagi-Uda Array</td>
<td>41</td>
</tr>
<tr>
<td>2.6.1. The Integral Operator</td>
<td>42</td>
</tr>
<tr>
<td>2.6.2. Matrix Formulation</td>
<td>43</td>
</tr>
</tbody>
</table>
CONTENTS

2.6.3. Far-zone Radiation 46
2.6.4. Current Distributions 48
2.6.5. Array Input Impedance 49

2.7. Electrically Small Antennas 52
 2.7.1. Multiturn Loop Antenna 53
 2.7.2. TEM-line Antenna with Loading 57

2.8. Modeling of Wire Antennas on Metallic Bodies 61
 2.8.1. Monopole or Circular Slot in the Base of a Cone 62
 2.8.2. Small Loops of TEM Line on an Aircraft 67

2.9. Conclusions and Acknowledgment 69

2.10. Exercises 70

Appendix I. Fields of a Magnetic Frill Current 72
Appendix II. Calculation of Characteristic Mode Currents 80
Appendix III. Fortran IV Program for Wire Antennas on Metallic Bodies 84
References 93

3. NUMERICAL SOLUTION OF ELECTROMAGNETIC SCATTERING PROBLEMS by P. C. WATERMAN 97

3.1. Introduction 97
 3.1.1. General Discussion 97
 3.1.2. Computational Aspects 97

3.2. Theory 98
 3.2.1. Matrix Formulation 98
 3.2.2. Evaluation of the Transition Matrix 101
 3.2.3. Application to Special Geometries 104
 3.2.4. Results for Finite Cylinders and a Cone–Sphere 108

3.3. Organization of the Computer Program 113
 3.3.1. Introduction 113
 3.3.2. Glossary of the Subroutines 114
 3.3.3. The Input Routine 115
 3.3.4. Calculation of End Points and Spacing for Integration 116
 3.3.5. The First Control Routine 117
 3.3.6. Associated Legendre Functions 119
 3.3.7. Bessel Functions 119
 3.3.8. Recursion Relationships for Bessel and Neumann Functions 120
 3.3.9. Generating the Body Shape 120
CONTENTS

3.3.10. First Matrix Printout 121
3.3.11. Printout of an Array 121
3.3.12. Generating the Q Matrix and the T Matrix 121
3.3.13. Normalizing Matrices 123
3.3.14. Conditioning Matrices 123
3.3.15. Printing the $[T]$ Matrix 124
3.3.16. Final Control Routine 124
3.3.17. Multiplying a Matrix Times a Vector 125
3.3.18. Core Dump 125
3.3.19. Storage Arrangements 125

Appendix I. The Fortran IV Program Listing 128

References 157

4. INTEGRAL EQUATION SOLUTIONS OF THREE-DIMENSIONAL SCATTERING PROBLEMS by A.J. POGGIO and E.K. MILLER

4.1. Introduction 159
4.2. The Integral Equations of Electromagnetic Theory 160
 4.2.1. The Derivation of Space-frequency Domain Integral Equations 160
 4.2.2. The Derivation of Space-Time Domain Integral Equations 177
 4.2.3. Tabulation of Integral Equations 182
4.3. Numerical Solution Methods 184
 4.3.1. Frequency Domain Solutions 185
 4.3.2. Time-domain Solutions 199
 4.3.3. Additional Considerations 206
4.4. Applications 211
 4.4.1. Frequency-domain Examples 211
 4.4.2. Time-domain Examples 239
4.5. Concluding Remarks 260

References 261

5. VARIATIONAL AND ITERATIVE METHODS FOR WAVEGUIDES AND ARRAYS by C.P. WU

5.1. Scattering from an Infinite Grating of Metallic Strips 266
5.2. Variational Principle, Method of Moments and Iterative Methods 270
 5.2.1. Variational Principle 270
 5.2.2. Method of Moments 271
 5.2.3. Iterative Methods 273
CONTENTS

5.3. Step Discontinuity in Circular Waveguides (Mode Conversion Applications) 213

5.4. Transition Between a Straight and a Continuously Curved Waveguide 279

5.4.1. Waveguide Modes in Curved Waveguides 279
5.4.2. Formulation of the Integral Equation 281
5.4.3. Application of the Moments Method 284
5.4.4. Special Computational Problems 284

5.5. Dielectric Slab-covered Waveguide Antenna 286

5.6. Double Discontinuity Problems 292

5.6.1. Coupled Integral Equations for Double Discontinuity Problems 293
5.6.2. Band Rejection Filter in Coaxial Waveguides 295

5.7. Concluding Remarks 298

Appendix. Convergence Test and the Relative Convergence Problem 300

References 303

6. SOME NUMERICALLY EFFICIENT METHODS

by R. MITTRA and T. ITOH

6.1. Introduction 305

6.2. Analysis of Microstrip Lines 306

6.2.1. Introduction and Description of the Problem 306
6.2.2. Formulation of a Boundary Value Problem in Spectral Domain 307
6.2.3. Modified Residue Calculus Technique 309
6.2.4. Numerical Computation 312
6.2.5. Numerical Results 315

6.3. Diffraction Grating 315

6.3.1. Description of the Problem 315
6.3.2. Formulation in the Spectral Domain 317
6.3.3. MRCT Method of Solution 319
6.3.4. Numerical Procedure 322
6.3.5. Numerical Results 322

6.4. Dielectric Step in a Waveguide 324

6.4.1. Introduction and Problem Description 324
6.4.2. Formulation of the Problem 326
6.4.3. Method of Solution 328
6.4.4. Numerical Considerations 332
6.4.5. Numerical Results 334
6.5. The Generalized Scattering Matrix Method for Solving Discontinuity Problems

6.5.1. Introduction
6.5.2. Generalized Scattering Matrix Analysis of a Thick-walled Phase Array
6.5.3. Method of Solution for the Thick-walled Phased Array
6.5.4. Considerations for the Numerical Calculation
6.5.5. Numerical Results

References
Problems

7. INVERSE SCATTERING AND REMOTE PROBING
by R. MITTRA

7.1. Introduction

7.2. The Two-dimensional Inverse Scattering Problem

7.2.1. Statement of the Problem and Preliminaries
7.2.2. Numerical Processing of Pattern Function to Derive Object Shape
7.2.3. Summary of Computational Procedure for Inverse Scattering
7.2.4. Numerical Results

7.3. Remote Probing of Antenna Apertures by Holographic Techniques

7.3.1. Description of the Problem
7.3.2. Analytical Development
7.3.3. Numerical Procedure
7.3.4. Numerical Results

7.4. Antenna Power Pattern Synthesis

7.4.1. Introduction and Description of Problem
7.4.2. Formulation of Problem
7.4.3. Numerical Considerations
7.4.4. Numerical Results

7.5. Remote Probing of Inhomogeneous Media

7.5.1. Introduction
7.5.2. Linear Approach
7.5.3. Parameter Optimization Method of Solution
7.5.4. Numerical Considerations
7.5.5. Numerical Results
Preface

Computer Electromagnetics is a relatively new and rapidly growing field. Yet, to date most of the publications on the subject have appeared only in technical journals or reports, some of which are not readily accessible. It is hoped that this book will serve to fill the existing need for a comprehensive text on the subject of computer techniques for solving a wide class of practical problems in applied electromagnetics, e.g. calculation of current distribution on antennas; computation of radar scattering from conducting or dielectric bodies; evaluation of discontinuity effects in waveguides and arrays; numerical reconstruction of wavefronts and aperture fields; and so on.

The manuscript is an outgrowth of a text originally prepared for a seminar series on the same topic offered at the University of Illinois on October 1970. Each of the seminar speakers for the course was asked to provide written notes describing the content of his lecture. These were later edited and put together in the form of the present text. The short course was repeated in 1971, with only a slight change in the contents, at Copenhagen under the auspices of the Technical University of Denmark and the Danish Engineering Society. The notes were well received on both of these occasions and provided encouragement to the authors for completing the monumental task of revising, proofing and editing their contributions.

During the course of the preparation of the manuscript the authors have received encouragement and moral support from many individuals and organizations, too numerous to list here on individual basis. Nevertheless, the authors would like to take this opportunity to thank their colleagues for the generous help and suggestions they have received that have undoubtedly left indelible marks on the text and have served to improve it.

The editor (R. M.) would like gratefully to acknowledge collaboration he has received from his co-authors, even through the periods of disappointing delays that severely taxed their patience.

The manuscript was very ably reviewed for the publisher by Professor Alex Cullen of University College, London. His comments and criticisms on the script were most welcome and have helped to unify the presentation and to improve the contents of the book.

The final editing of the book was carried out during a sabbatical leave of absence from the University of Illinois when the editor (R. M.) was at the Technical University of Denmark, Lyngby, Denmark. He is particularly grateful to Professor H. L. Knudsen, Head of Laboratory for Electromagnetic Theory, for the facilities and support provided him during the six-month period of 1971–2. Needless to say, the bulk of the editing work and the writing of Chapters 6 and 7 of the book were carried out at the University of Illinois and it is a pleasure to acknowledge the support of the Electrical Engineering Department received during the years 1970–2.

University of Illinois
Urbana, Illinois

Raj Mittra